Наше Солнце не вечно. Через миллиарды лет оно умрет — превратится в огромного красного гиганта и поглотит Землю. Что будет с Землей если Солнце станет красным карликом прямо сегодня, на наших глазах, и как мы будем справляться с последствиями?
What happens when matter can’t get any denser yet somehow does? The answer — it becomes “strange.” Strange Stars may be the most massive stellar remnant that is just shy of forming a black hole. And they could be even cooler than black holes.
Space Time is now on Patreon! If you’d like to support the show you can go to www.patreon.com/pbsspacetime and throw us a few bucks.
Get your own Space Time tshirt at bit.ly/1QlzoBi
Tweet at us! @pbsspacetime
Facebook: facebook.com/pbsspacetime
Email us! pbsspacetime [at] gmail [dot] com
Comment on Reddit: www.reddit.com/r/pbsspacetime
Universe Sandbox ² — игра про космос или симулятор, основанный на реальной физике симулятор космоса, который позволяет создавать, разрушать и взаимодействовать в невиданных ранее масштабах.
Он объединяет в реальном времени гравитацию, климат, столкновения и взаимодействия материи, чтобы показать вам красоту вселенной и хрупкость нашей планеты.
Universe Sandbox ² включает в себя версию для настольных компьютеров и режим VR с поддержкой HTC Vive, Oculus Rift Touch и Windows Mixed Reality.
Что будет с людьми, если на землю упадет самый маленький астероид? — Universe Sandbox 2
Что произойдет с Землей при взрыве этого гипергиганта?! Го узнаем!
Universe Sandbox 2-увлекательная космическая песочница в который ты можешь стать Богом.
Группа канала vk.com/lgch_group
Поддержать LG Яндекс Деньгами
410012053486186
A new study using observations from NASAs Fermi Gamma-ray Space Telescope reveals the first clear-cut evidence that the expanding debris of exploded stars produces some of the fastest-moving matter in the universe. This discovery is a major step toward meeting one of Fermis primary mission goals.
Cosmic rays are subatomic particles that move through space at nearly the speed of light. About 90 percent of them are protons, with the remainder consisting of electrons and atomic nuclei. In their journey across the galaxy, the electrically charged particles become deflected by magnetic fields. This scrambles their paths and makes it impossible to trace their origins directly.
Through a variety of mechanisms, these speedy particles can lead to the emission of gamma rays, the most powerful form of light and a signal that travels to us directly from its sources.
Two supernova remnants, known as IC 443 and W44, are expanding into cold, dense clouds of interstellar gas. This material emits gamma rays when struck by high-speed particles escaping the remnants.
Scientists have been unable to ascertain which particle is responsible for this emission because cosmic-ray protons and electrons give rise to gamma rays with similar energies. Now, after analyzing four years of data, Fermi scientists see a gamma-ray feature from both remnants that, like a fingerprint, proves the culprits are protons.
When cosmic-ray protons smash into normal protons, they produce a short-lived particle called a neutral pion. The pion quickly decays into a pair of gamma rays. This emission falls within a specific band of energies associated with the rest mass of the neutral pion, and it declines steeply toward lower energies.
Detecting this low-end cutoff is clear proof that the gamma rays arise from decaying pions formed by protons accelerated within the supernova remnants.